Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
China Journal of Chinese Materia Medica ; (24): 2739-2748, 2023.
Article in Chinese | WPRIM | ID: wpr-981377

ABSTRACT

Ulcerative colitis(UC) is a recurrent, intractable inflammatory bowel disease. Coptidis Rhizoma and Bovis Calculus, serving as heat-clearing and toxin-removing drugs, have long been used in the treatment of UC. Berberine(BBR) and ursodeoxycholic acid(UDCA), the main active components of Coptidis Rhizoma and Bovis Calculus, respectively, were employed to obtain UDCA-BBR supramolecular nanoparticles by stimulated co-decocting process for enhancing the therapeutic effect on UC. As revealed by the characterization of supramolecular nanoparticles by field emission scanning electron microscopy(FE-SEM) and dynamic light scattering(DLS), the supramolecular nanoparticles were tetrahedral nanoparticles with an average particle size of 180 nm. The molecular structure was described by ultraviolet spectroscopy, fluorescence spectroscopy, infrared spectroscopy, high-resolution mass spectrometry, and hydrogen-nuclear magnetic resonance(H-NMR) spectroscopy. The results showed that the formation of the supramolecular nano-particle was attributed to the mutual electrostatic attraction and hydrophobic interaction between BBR and UDCA. Additionally, supramolecular nanoparticles were also characterized by sustained release and pH sensitivity. The acute UC model was induced by dextran sulfate sodium(DSS) in mice. It was found that supramolecular nanoparticles could effectively improve body mass reduction and colon shortening in mice with UC(P<0.001) and decrease disease activity index(DAI)(P<0.01). There were statistically significant differences between the supramolecular nanoparticles group and the mechanical mixture group(P<0.001, P<0.05). Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum levels of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6), and the results showed that supramolecular nanoparticles could reduce serum TNF-α and IL-6 levels(P<0.001) and exhibited an obvious difference with the mechanical mixture group(P<0.01, P<0.05). Flow cytometry indicated that supramolecular nanoparticles could reduce the recruitment of neutrophils in the lamina propria of the colon(P<0.05), which was significantly different from the mechanical mixture group(P<0.05). These findings suggested that as compared with the mechanical mixture, the supramolecular nanoparticles could effectively improve the symptoms of acute UC in mice. The study provides a new research idea for the poor absorption of small molecules and the unsatisfactory therapeutic effect of traditional Chinese medicine and lays a foundation for the research on the nano-drug delivery system of traditional Chinese medicine.


Subject(s)
Animals , Mice , Colitis, Ulcerative/drug therapy , Ursodeoxycholic Acid/adverse effects , Berberine/pharmacology , Interleukin-6 , Tumor Necrosis Factor-alpha/pharmacology , Drugs, Chinese Herbal/pharmacology , Colon , Nanoparticles , Dextran Sulfate/adverse effects , Disease Models, Animal , Colitis/chemically induced
2.
Journal of Southern Medical University ; (12): 937-943, 2022.
Article in Chinese | WPRIM | ID: wpr-941024

ABSTRACT

OBJECTIVE@#To explore the mechanism by which berberine inhibits ferroptosis of mouse hippocampal neuronal cells (HT22).@*METHODS@#Cultured HT22 cells were pretreated with 30 or 60 μmol/L berberine for 2 h before exposure to 0.5 μmol/L erastin for 8 h, and the cell proliferation, intracellular ferric iron level, changes in intracellular reactive oxygen species (ROS) and cell apoptosis were detected using CCK-8, Fe2+ fluorescent probe, fluorescent dye (DAPI) and fluorescent probe (H2DCFH-DA). RT-qPCR and Western blotting were used to detect the mRNA and protein expressions of Nrf2, HO-1 and GPX4 in the cells. We further tested the effects of treatments with 2 μmol/L ML385 (a Nrf2 inhibitor), 60 μmol/L berberine and erastin in the cells to explore the protective mechanism of berberine against erastin-induced ferroptosis in the neuronal cells.@*RESULTS@#Treatment with 0.5 μmol/L erastin significantly lowered the viability of HT22 cells (P < 0.05) and increased the production of ROS, cell apoptosis rate and ferric iron level (P < 0.05). Pretreatment with 30 and 60 μmol/L berberine both significantly increased the vitality of erastin-exposed cells (P < 0.05) and lowered the levels of intracellular ROS and ferric iron content (P < 0.05). RT-qPCR and Western blotting showed that berberine obviously promoted the expressions of Nrf2, HO-1 and GPX4 in the cells (P < 0.05), and treatment with ML385 significantly inhibited the Nrf2-HO-1/GPX4 pathway, increased intracellular ROS and ferric iron contents and mitigated the protective effect of berberine against erastin-induced ferroptosis (P < 0.05).@*CONCLUSION@#Berberine can inhibit erastin-induced ferroptosis in HT22 cells possibly by activating the Nrf2-HO-1/ GPX4 pathway.


Subject(s)
Animals , Mice , Berberine/pharmacology , Ferroptosis , Fluorescent Dyes , Hippocampus/metabolism , Iron/metabolism , NF-E2-Related Factor 2/metabolism , Piperazines , Reactive Oxygen Species/metabolism
3.
China Journal of Chinese Materia Medica ; (24): 4201-4207, 2021.
Article in Chinese | WPRIM | ID: wpr-888081

ABSTRACT

The present study aims to investigate the effects of the main components(aesculin, berberine hydrochloride, and anemoside B4) in the butyl alcohol extract of Baitouweng Decoction(BAEB) on the chemotaxis of neutrophils induced by dimethyl sulfoxide(DMSO). HL60 cells were cultivated in RPMI-1640 complete medium, and transferred into a 6-well plate(2 × 10~5 per mL) with 4 mL in each well, followed by incubation with DMSO at 1.3% for five days. The morphologic changes of cells were observed under an inverted microscope. The CD11 b expression after DMSO induction was analyzed by flow cytometry. The effects of aesculin, berberine hydrochloride, and anemoside B4 on the cell proliferation and migration were detected by CCK8 assay and Transwell assay, respectively. The effects of the main components on the production and polarization of F-actin protein were also examined by flow cytometry and laser confocal microscopy. PI3 K/Akt signaling pathway was checked by Western blot. As revealed by the results, neutrophil-like HL60 cells were observed after DMSO induction. The CD11 b expression in these cells increased significantly as indicated by the flow cytometry. Additionally, 100 μg·mL~(-1) aesculin, 8 μg·mL~(-1) berberine hydrochloride, and 80 μg·mL~(-1) anemoside B4 were potent in inhibiting the migration of neutrophils and reducing F-actin expression. Berberine hydrochloride was verified to be capable of diminishing phosphorylated PI3 K/Akt protein expression. The findings indicate that aesculin, anemoside B4, and especially berberine hydrochloride in the BAEB can inhibit the chemotaxis of neutrophils, which is possibly achieved by the inhibition of F-actin and PI3 K/Akt signaling pathway.


Subject(s)
1-Butanol , Berberine/pharmacology , Chemotaxis , Drugs, Chinese Herbal/pharmacology , Neutrophils
4.
Journal of Integrative Medicine ; (12): 545-554, 2021.
Article in English | WPRIM | ID: wpr-922528

ABSTRACT

OBJECTIVE@#To investigate effects of berberine (BBR) on cholesterol synthesis in HepG2 cells with free fatty acid (FFA)-induced steatosis and to explore the underlying mechanisms.@*METHODS@#A steatosis cell model was induced in HepG2 cell line fed with FFA (0.5 mmol/L, oleic acid:palmitic acid = 2:1), and then treated with three concentrations of BBR; cell viability was assessed with cell counting kit-8 assays. Lipid accumulation in cells was observed through oil red O staining and total cholesterol (TC) content was detected by TC assay. The effects of BBR on cholesterol synthesis mediators were assessed by Western blotting and quantitative polymerase chain reaction. In addition, both silent information regulator 1 (SIRT1) and forkhead box transcription factor O1 (FoxO1) inhibitors were employed for validation.@*RESULTS@#FFA-induced steatosis was successfully established in HepG2 cells. Lipid accumulation and TC content in BBR groups were significantly lower (P < 0.05, P < 0.01), associated with significantly higher mRNA and protein levels of SIRT1(P < 0.05, P < 0.01), significantly lower sterol regulatory element-binding protein 2 (SREBP2) and 3-hydroxy 3-methylglutaryl-CoA reductase levels (P < 0.05, P < 0.01), as well as higher Acetyl-FoxO1 protein level (P < 0.05, P < 0.01) compared to the FFA only group. Both SIRT1 inhibitor SIRT1-IN-1 and FoxO1 inhibitor AS1842856 blocked the BBR-mediated therapeutic effects. Immunofluorescence showed that the increased SIRT1 expression increased FoxO1 deacetylation, and promoted its nuclear translocation.@*CONCLUSION@#BBR can mitigate FFA-induced steatosis in HepG2 cells by activating SIRT1-FoxO1-SREBP2 signal pathway. BBR may emerge as a potential drug candidate for treating nonalcoholic hepatic steatosis.


Subject(s)
Humans , Berberine/pharmacology , Cholesterol , Forkhead Box Protein O1/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Sirtuin 1/genetics , Sterol Regulatory Element Binding Proteins
5.
China Journal of Chinese Materia Medica ; (24): 2449-2455, 2021.
Article in Chinese | WPRIM | ID: wpr-879146

ABSTRACT

Malignant tumor, an important factor threatening human life and health, brings huge economic burden to patients. At present, chemoradiotherapy is still the main treatment method for tumor diseases, but there are also great side effects when it plays a therapeutic role. Traditional Chinese medicine in the prevention and treatment of tumor diseases has many advantages such as few side effects, improving the physiological state of patients, and slowing down the side effects of radiotherapy and chemotherapy. Berberine is an effective component of rhizoma coptidis, with a very good antitumor effect. It can inhibit tumor cell proliferation, promote tumor cell apoptosis, inhibit tumor metastasis and angiogenesis, regulate tumor autophagy, reverse multi-drug resistance of tumor, regulate the body immunity, and affect tumor metabolic reprogramming to play its role. Compared with chemical preparations, berberine has a wide range of sources, with high safety and easy access, and has great potential in the prevention and treatment of malignant tumors. In this article, we would mainly review the research progress on the antitumor mechanism of berberine in recent years.


Subject(s)
Humans , Berberine/pharmacology , Cell Proliferation , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Neoplasms/drug therapy
6.
China Journal of Chinese Materia Medica ; (24): 155-161, 2021.
Article in Chinese | WPRIM | ID: wpr-878924

ABSTRACT

The aim of this paper was to investigate the effect of berberine hydrochloride on the cell wall integrity of Candida albicans hypha. The minimal inhibitory concentration(MIC) of berberine hydrochloride against clinical and standard C. albicans strains was detected by micro liquid-based dilution method; the effect of berberine hydrochloride on the colony formation of C. albicans SC5314 was investigated by spot assay; the effect of berberine hydrochloride on the metabolism of C. albicans SC5314 hypha was checked by XTT reduction assay, and the viability of C. albicans SC5314 hypha was tested by fluorescent staining assay. The effect of berberine hydrochloride on the morphology of C. albicans SC5314 hypha was examined by scanning electron microscope. The changes in the cell wall of C. albicans SC5314 hypha after berberine hydrochloride treatment were detected by transmission electron microscopy. The effect of berberine hydrochloride on β-glucan from C. albicans SC5314 was detected by flow cytometry. The effect of berberine hydrochloride on hypha-specific gene ECE1 and β-glucan synthase genes FKS1 and FKS2 in C. albicans was examined by qRT-PCR. The results showed that berberine hydrochloride showed a strong inhibitory effect on both clinical and standard strains of C. albicans, and the MIC was 64-128 μg·mL~(-1). Spot assay, XTT redunction assay and fluorescent staining assay showed that with the increase of berberine hydrochloride concentration, the viability of C. albicans SC5314 gradually decreased. The transmission electron microscopy scanning assay showed that this compound could cause cell wall damage of C. albicans. The flow cytometry analysis showed the exposure degree of C. albicans β-glucan. The qRT-PCR further showed that berberine hydrochloride could significantly down-regulate hypha-specific gene ECE1 and β-glucan synthase-related gene FKS1 and FKS2. In conclusion, this compound can down-regulate C. albicans and β-glucan synthase-related gene expressions, so as to destroy the cell wall structure of C. albicans, expose β-glucan and damage the integrity of the wall.


Subject(s)
Antifungal Agents/pharmacology , Berberine/pharmacology , Candida albicans/genetics , Cell Wall , Hyphae , Microbial Sensitivity Tests
7.
China Journal of Chinese Materia Medica ; (24): 33-40, 2021.
Article in Chinese | WPRIM | ID: wpr-878907

ABSTRACT

Berberine is the main extract of Coptis chinensis, and its anti-inflammatory, antioxidant, antibacterial and immunomodulatory effects have been confirmed by modern studies. Ulcerative colitis(UC) is a chronic, idiopathic inflammatory bowel disease with unknown etiology. Its causes involve genetics, intestinal microecology and mucosal immune system disorders. In this paper, literatures on relevant pathways and mechanism of berberine on ulcerative colitis in recent years were consulted and summarized to provide me-thods and ideas for developing berberine in the treatment of UC and exploring the mechanisms. The results showed that berberine protects the intestinal mucosal barrier, restores the body's normal immune response, and improves oxidative stress by regulating multiple signaling pathways, such as JAK-STAT, NK-κB, PI3 K-AKT, MAPK, Nrf2, ERS, and MLCK-MLC, so as to treat UC.


Subject(s)
Humans , Berberine/pharmacology , Colitis , Colitis, Ulcerative/genetics , Intestinal Mucosa , Signal Transduction
8.
Biol. Res ; 51: 9, 2018. graf
Article in English | LILACS | ID: biblio-950895

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is the leading cause of end-stage renal failure, contributing to severe morbidity and mortality in diabetic patients. Berberine (BBR) has been well characterized to exert renoprotective effects in DN progression. However, the action mechanism of BBR in DN remains to be fully understood. METHODS: The DN rat model was generated by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) while 30 mM high glucose (HG)-treated podocytes were used as an in vitro DN model. The fasting blood glucose level and ratio of kidney weight to body weight were measured after BBR treatment (50, 100, or 200 mg/kg) in STZ-induced DN rats. The renal injury parameters including 24-h urinary protein, blood urea nitrogen and serum creatinine were assessed. qRT-PCR was performed to detect the transcript amounts of inflammatory factors. The concentrations of inflammatory factors were evaluated by ELISA kits. Western blot analysis was conducted to measure the amounts of TLR4/NF-κB-related proteins. The apoptotic rate of podocytes was analyzed by flow cytometry using Annexin V/propidium iodide. RESULTS: Berberine reduced renal injury in STZ-induced DN rat model, as evidenced by the decrease in fasting blood glucose, ratio of kidney weight to body weight, 24-h urinary protein, serum creatinine, and blood urine nitrogen. BBR attenuated the systemic and renal cortex inflammatory response and inhibited TLR4/NF-κB pathway in STZ-induced DN rats and HG-induced podocytes. Also, HG-induced apoptosis of podocytes was lowered by BBR administration. Furthermore, blockade of TLR4/NF-κB pathway by resatorvid (TAK-242) or pyrrolidine dithiocarbamate aggravated the inhibitory effect of BBR on HG-induced inflammatory response and apoptosis in podocytes. CONCLUSIONS: Berberine ameliorated DN through relieving STZ-induced renal injury, inflammatory response, and podocyte HG-induced apoptosis via inactivating TLR4/NF-κB pathway.


Subject(s)
Animals , Male , Rats , Berberine/pharmacology , Signal Transduction/drug effects , NF-kappa B/antagonists & inhibitors , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Toll-Like Receptor 4/antagonists & inhibitors , Rats, Sprague-Dawley
9.
Biocell ; 36(3): 113-120, Dec. 2012. graf
Article in English | LILACS | ID: lil-694711

ABSTRACT

Berberine, a constituent of some traditional Chinese medicinal plants, has been reported to have cytotoxicity effects on different human cancer cell lines. There is no available information about the effects and mechanism of action of berberine on human colon cancer cell line HCT-8. In this paper, the cytotoxicity of berberine on HCT-8 cancer cells was investigated by MTT assay, fluorescence microscopy and flow cytometry analysis. Our data revealed that berberine could significantly inhibit the growth of HCT-8 cells in a dose- and time-dependent manner. Morphology of apoptotic cells was studied with acridine orange/ethidium bromide staining. The concentrations of lactate dehydrogenase and both acid and alkaline phosphatases were significantly increased in cell supernatants after berberine treatment, suggesting cell death. Furthermore, flow cytometry analysis showed that berberine could arrest HCT-8 cells at S phase in a time-dependent manner. To further investigate the apoptotic molecular mechanism, reverse transcription-polymerase chain reaction (RT-PCR) and western blotting methods were used. The up-regulated mRNA and/or protein expressions of Fas, FasL, TNF-a, caspase-3 and down-regulation of pro-caspase-3 suggest that the death receptor pathway may be involved in the apoptotic pathway induced by berberine. Decrease of Bcl-2 and increase of Bax in mRNA and/or protein expressions showed that the Bcl-2 family proteins were involved in berberine-induced apoptosis. We also found that berberine-induced apoptosis was associated with an up-regulated expressions of p53 and prohibitin (PHB), and decreased vimentin expression. These results suggest that berberine can suppress cell growth and reduce cell survival by arresting the cell-cycle and by inducing apoptosis of HCT-8 cells.


Subject(s)
Humans , Berberine/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Apoptosis , Berberine/metabolism , Cell Cycle , Cell Line, Tumor , Flow Cytometry , L-Lactate Dehydrogenase/metabolism , Medicine, Chinese Traditional , Microscopy, Fluorescence , RNA, Messenger/metabolism , Repressor Proteins/pharmacology , S Phase , Time Factors , Tetrazolium Salts/pharmacology , Thiazoles/pharmacology , /metabolism , Vimentin/metabolism , /metabolism
10.
Yonsei Medical Journal ; : 346-351, 2012.
Article in English | WPRIM | ID: wpr-154809

ABSTRACT

PURPOSE: Thyroid cancer is the most common malignancy in Korean females and can be treated with good prognosis. However, drugs to treat aggressive types of thyroid cancer such as poorly differentiated or anaplastic thyroid cancer have not yet been established. To that end, we analyzed the effects of berberine on human thyroid cancer cell lines to determine whether this compound is useful in the treatment of aggressive thyroid cancer. MATERIALS AND METHODS: The two thyroid cancer cell lines 8505C and TPC1, under adherent culture conditions, were treated with berberine and analyzed for changes in cell growth, cell cycle duration, and degree of apoptosis. RESULTS: Following berberine treatment, both cell lines showed a dose-dependent reduction in growth rate. 8505C cells showed significantly increased levels of apoptosis following berberine treatment, whereas TPC1 cells showed cell cycle arrest at the G0/G1 phase. Immunobloting of p-27 expression following berberine treatment showed that berberine induced a little up-regulation of p-27 in 8505c cells but relatively high up-regulation of p-27 in TPC1 cells. CONCLUSION: These results suggest that berberine treatment of thyroid cancer can inhibit proliferation through apoptosis and/or cell cycle arrest. Thus, berberine may be a novel anticancer drug for the treatment of poorly differentiated or anaplastic thyroid cancer.


Subject(s)
Humans , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Berberine/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Thyroid Neoplasms/metabolism
11.
IJEM-Iranian Journal of Endocrinology and Metabolism. 2009; 11 (1): 41-47
in Persian | IMEMR | ID: emr-91203

ABSTRACT

Metabolic syndrome is complex of metabolic disorders that correlates with cardiovascular disease. This study aimed at investigating the effect of processed Berberis vulgaris [B.vulgaris] on some metabolic syndrome components. Participants, type2 diabetics, were recruited in a randomized controlled clinical trial [n = 57] and randomly assigned into three groups: 1] processed B.vulgaris [n =19], 2] apple vinegar group [n =19] and 3] control group [n =19]. Height, weight, serum total cholesterol, HDL-, LDL-cholesterol, triglycerides, glucose and insulin concentrations were measured at baseline and at the end of the 8th week and BMI, total/HDL-cholesterol ratio and insulin resistance were estimated. Processed B.vulgaris group showed no significant effects on BMI, total cholesterol, triglycerides and glucose concentrations, whereas LDL-cholesterol concentration [22.48 +/- 35.44mg/dl] and total/HDL-cholesterol ratio [2.56 +/- 4.87] significantly decreased and HDL-cholesterol concentration [12.33 +/- 20.58mg/dl] increased [P < 0.05]. No significant effect on lipid profiles was found in the apple vinegar group. Increased insulin concentration and insulin resistance was observed in all of these groups [P < 0.001], independent of processed B.vulgaris and apple vinegar effects. Findings of the present study showed the beneficial effects of processed B.vulgaris on certain atherosclerosis risk factors


Subject(s)
Humans , Berberine , Berberine/pharmacology , Atherosclerosis/diet therapy , Berberis , Phytotherapy , Randomized Controlled Trials as Topic , Risk Factors , Metabolic Syndrome , Cholesterol, LDL , Cholesterol, HDL , Triglycerides , Blood Glucose , Insulin
12.
Saudi Medical Journal. 2009; 30 (6): 760-766
in English | IMEMR | ID: emr-92741

ABSTRACT

To investigate the protective effects of the total base from rhizoma coptis chinensis [CTB] and berberine [Ber] on neurodegeneration induced by aluminum overload in rats. The study took place in the Department of Pharmacology, Chongqing Medical University, Chongqing, China, between February 2005 and May 2007. Wistar rats were divided into control group, model group, Ber-treated group, CTB [55 mg/kg and 110 mg/kg]-treated group, and nimodipine-treated group [n=20]. A rat brain damage model was established via intragastric administration of 400 mg/kg element aluminum once a day, 5 days a week for 12 weeks. The CTB, Ber, and nimodipine were intragastrically administered 4 hours after each aluminum administration for 12 weeks. The morphological changes of the neurons of the rat hippocampus and the changes of rat learning and memory functions were observed. The superoxide dismutase [SOD], choline acetyltransferase [ChAT], acetylcholinesterase [AchE], and monoamine oxidase-B [MAO-B] activities and malondialdehyde [MDA] content, as well as the MAO-B expression in the rat brain were examined. The CTB, Ber, and nimodipine significantly improved the learning and memory ability impairment and hippocampal neuronal death. The CTB, Ber, and nimodipine also significantly blunted the decrease of SOD and ChAT activities, and the increase of MDA content, AchE activities, and MAO-B expressions and activity in the aluminum-overload rats. The CTB and Ber have protective effects on neurodegeneration induced by aluminum overload. The CTB [110 mg/kg] has more powerful neuroprotection than Ber


Subject(s)
Male , Animals, Laboratory , Berberine/pharmacology , Rhizome , Brain Injuries , Brain/drug effects , Aluminum , Neurodegenerative Diseases/veterinary , Rats, Wistar , Disease Models, Animal , Protective Agents
13.
Experimental & Molecular Medicine ; : 599-605, 2006.
Article in English | WPRIM | ID: wpr-91147

ABSTRACT

Berberine (BBR), an isoquinoline alkaloid, has a wide range of pharmacological effects, yet its exact mechanism is unknown. In order to understand the anti-adipogenic effect of BBR, we studied the change of expression of several adipogenic enzymes of 3T3-L1 cells by BBR treatment. First, we measured the change of leptin and glycerol in the medium of 3T3-L1 cells treated with 1 micrometer, 5 micrometer and 10 micrometer concentrations of BBR. We also measured the changes of adipogenic and lipolytic factors of 3T3-L1. In 3T3-L1 cells, both leptin and adipogenic factors (SREBP-1c, C/EBP-alpha, PPAR-gamma, fatty acid synthase, acetyl-CoA carboxylase, acyl-CoA synthase and lipoprotein lipase) were reduced by BBR treatment. Glycerol secretion was increased, whereas expression of lipolytic enzymes (hormone-sensitive lipase and perilipin) mRNA was slightly decreased. Next, we measured the change of inflammation markers of 3T3-L1 cells by BBR treatment. This resulted in the down-regulation of mRNA level of inflammation markers such as TNF-alpha, IL-6, C- reactive protein and haptoglobin. Taken together, our data shows that BBR has both anti-adipogenic and anti-inflammatory effects on 3T3-L1 adipocytes, and the anti-adipogenic effect seems to be due to the down-regulation of adipogenic enzymes and transcription factors.


Subject(s)
Mice , Animals , RNA, Messenger/genetics , Leptin/metabolism , Inflammation Mediators/metabolism , Inflammation/genetics , Glycerol/metabolism , Gene Expression Regulation/drug effects , Cytokines/genetics , Berberine/pharmacology , Adipogenesis/drug effects , Adipocytes/drug effects , 3T3-L1 Cells
14.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 127-30, 2005.
Article in English | WPRIM | ID: wpr-634237

ABSTRACT

In order to further investigate the mechanisms of action of berberine (Ber), we assessed the effects of Ber on the mRNA expression of nitric oxide synthases (NOS) in rat corpus cavernosum. After incubation with Ber for 1 or 3 h respectively, the levels of NOS mRNA were examined by reverse transcription polymerase chain reaction (RT-PCR). Our results showed that there were iNOS and eNOS mRNA expressions in rat corpus cavernosum. Ber enhanced eNOS mRNA expression in rat penis, but exhibited no effect on the expression of iNOS mRNA (P > 0.05). The present study indicated that the relaxation of Ber involved the NO-cGMP signal transduction pathway. The enhancing effect of Ber on eNOS mRNA expression might associated with its relaxation of corpus cavernosum.


Subject(s)
Berberine/pharmacology , Connective Tissue/physiopathology , Nitric Oxide Synthase/biosynthesis , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase Type I/biosynthesis , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type III/biosynthesis , Nitric Oxide Synthase Type III/genetics , Penile Erection/physiology , Penis/metabolism , Penis/physiology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
15.
Hamdard Medicus. 2004; 47 (1): 16-22
in English | IMEMR | ID: emr-65952

ABSTRACT

The stem bark, stem wood, root bark and root wood of Berbetis tinctoria Lesch. were extracted successively with various organic solvents and the subsequent fluorescence analysis was carried out. The quantitative ash values and extractive values were determined. Berberine was isolated and characterized. The quantitative estimation of berberine in the various extracts was carried out by HPTLC technique. The antibacterial and antifungal activities of methanolic extracts were carried out by cylinder-plate and serial dilution method. The methanolic extracts showed prominent activity against Staphylococcus aureus in comparison to control [Ampicillin trihydrate]


Subject(s)
Berberine/isolation & purification , Plant Extracts , Berberine/pharmacology , Plants, Medicinal
SELECTION OF CITATIONS
SEARCH DETAIL